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Abstract

The focus of this invited keynote paper (to be pre-
sented by M. J. Siegel) is mired-machine heteroge-
neous computing, where a suite of different kinds
of high-performance machines are interconnected by
high-speed links. Such a system can be orchestrated
to perform an application whose subtasks have diverse
execution requirements. Subtasks are assigned to and
executed on the machines that will result in a minimal
overall execution time for the task, considering factors
mncluding inter-machine communication overhead. A
conceptual model of the automatic decomposition of
tasks and assignment of subtasks is presented. Eram-
ples of static and dynamic approaches to the match-
wing and scheduling of subtasks are summarized. Some
open research problems are discussed.

1 Introduction

Existing high-performance computers typically
achieve only a fraction of their peak capabilities on
certain portions of some application tasks [8]. This is
because different subtasks of an application can have
very different computational requirements that result
in the need for different machine capabilities. A sin-
gle machine architecture cannot satisfy all the compu-
tational requirements of certain applications equally
well. Thus, the use of a heterogeneous computing en-
vironment is more appropriate.

The focus of this invited keynote paper (to
be presented by H. J. Siegel) is mixed-machine
heterogeneous computing (HC), where a suite of dif-
ferent kinds of high-performance machines are inter-
connected by high-speed links. Such a system pro-
vides a variety of architectural capabilities, orches-
trated to perform an application whose subtasks have
diverse execution requirements [17]. The task must
be decomposed into subtasks, where each subtask
is computationally homogeneous, and different sub-
tasks may have different machine architectural re-
quirements. These subtasks may share initial or gen-
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erated data, creating the potential for inter-machine
data transfer overhead. To exploit HC systems in such
situations, each subtask must be assigned to and ex-
ecuted on the machines that will result in a minimal
overall execution time for the task, considering fac-
tors including inter-machine communication overhead.
The subtasks can be assigned either prior to execution
(statically) or during the execution (dynamically).

Figure 1 shows a hypothetical example of an appli-
cation program whose various subtasks are best suited
for execution on different machine architectures [8].
Executing the whole program on a SIMD machine
only gives approximately five times the performance
achieved by a baseline serial machine. Only the SIMD
portion of the program can be executed significantly
faster because of the mismatch between each subtask’s
unique computational requirement and the SIMD ar-
chitecture. Alternatively, the use of four different ma-
chines, each matched to the computational require-
ments of the subtask to which it was assigned, can
result in an execution 50 times as fast as the baseline
serial machine.

A conceptual model for automatic HC is introduced
in Section 2. As an example of current research in
static matching and scheduling, Section 3 presents a
genetic-algorithm-based approach. Section 4 describes
a dynamic mapping algorithm for on-line matching
and scheduling. Open problems are discussed in Sec-
tion 5.

2 A Conceptual Model for HC

Typically, users of HC systems must perform task
decomposition and subtask matching and scheduling
themselves (e.g.,[13, 15, 20]). A conceptual model for
automatic task decomposition, matching subtasks to
machines, and scheduling subtasks is shown in Figure
2. Tt builds on the model presented in [18] and is re-
ferred to as a “conceptual” model because no complete
automatic implementation currently exists.

In stage 1, using information about the expected
types of application tasks and about the machines in
the HC suite, a set of parameters is generated that
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Figure 1: Hypothetical example of the advantage of using a heterogeneous suite of machines, where the hetero-
geneous suite time includes intermachine communication overhead (based on [8]). Not drawn to scale.

is relevant to both the computational requirements of
the applications and the machine capabilities of the
HC system. For each parameter, categories for com-
putational characteristics and categories for machine
architecture features are derived.

In stage 2, task profiling decomposes the applica-
tion task into subtasks, each of which is computation-
ally homogeneous. The computational requirements
for each subtask are then quantified by profiling the
code and data. Analytical benchmarking is used to
quantify how effectively each of the available machines
in the suite performs on each of the types of compu-
tations being considered.

One of the functions of stage 3 is to be able to use
the information from stage 2 to derive the estimated
execution time of each subtask on each machine in the
HC suite and the associated inter-machine communi-
cation overhead. Then, these static results, with the
machine and inter-machine network initial loading and
“status” (i.e., machine/network faults and expected
subtask/transfer completion times) are used to gener-
ate an assignment of the subtasks to machines and an
execution schedule based on certain cost metrics (e.g.,
minimizing the overall task execution time).

Stage 4 is the execution of the given application. In
dynamic matching and scheduling systems, the sub-
task completion times and loading/status of the ma-
chines/network are monitored. This information may
be used to reinvoke the matching and scheduling of
stage 3 to improve the machine assignment and exe-
cution schedule.

Automatic HC 1s relatively new field. Frame-
works for task profiling, analytical benchmarking, and
mapping (matching and scheduling) have been pro-
posed, however, further research is needed to make

this conceptual model a reality [17, 18§].

3 Static Task Mapping

In general, the problem of performing matching and
scheduling in an HC environment is NP-complete [5],
and therefore some heuristic must be employed. A
variety of static approaches have been studied for dif-
ferent HC models (e.g., [4, 11, 16, 19]). As an exam-
ple of current HC research on mapping statically, a
genetic-algorithm approach from [21] is summarized.
An application task is decomposed into a set of sub-
tasks S. Let s; be the :-th subtask. An HC suite
consists of a set of machines M. Let m; be the j-
th machine. Each machine can be a different type.
The global data items are data items that need to be
transferred between subtasks.

The following assumptions about the applications
and HC environment are made. Each application task
will be represented by a DAG (directed acyclic graph),
whose nodes are the subtasks that need to be executed
to perform the application and whose arcs are the data
dependencies between subtasks. (Note that while the
subtasks’ dependencies are represented as a DAG, sub-
tasks themselves may contain loops.) Each edge is la-
beled by the global data item that is transferred over
it. The application task has exclusive use of the HC
environment, and the genetic-algorithm-based mapper
controls the HC machine suite (hardware platform).
Subtask execution is non-preemptive. The estimated
expected execution time of each subtask on each ma-
chine is known. For each pair of machines in the HC
suite, an equation for estimating the time to send data
between those machines as a function of data set size
is known.

Genetic algorithms (GAs) are a heuristic approach
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Figure 2: Model for integrating the software support needed for automating the use of heterogeneous computing

systems (based on [18]).

to optimization problems that are intractable. The
first step is to encode some of the possible solutions
as chromosomes, the set of which is referred to as a
population. In the [21] approach, each chromosome
consists of two parts: the matching string (mat) and
the scheduling string (ss). If mat(é) = j, then sub-
task s; is assigned to machine m;. Typically, mul-
tiple subtasks will be assigned to the same machine,
and then executed in a non-preemptive manner based
on an ordering that obeys the precedence constraints
(data dependencies) specified in the task DAG. The
scheduling string is a topological sort of the DAG rep-
resenting the task (i.e., a valid total ordering of the
partially ordered DAG). If ss(k) = ¢, then subtask s;
is the k-th subtask in the total ordering. Because it
is a topological sort, if subtask ss(k) needs a global
data item created by subtask ss(j), then j < k. The
scheduling string gives an ordering of subtasks that is
used by the evaluation step.

Each chromosome is associated with a fitness value,
which is the completion time of the solution (i.e., map-
ping) represented by this chromosome (i.e., the ex-

pected execution time of the application task if the
mapping specified by this chromosome were used).
Overlapping among all of the computations and com-
munications performed is limited only by inter-subtask
data dependencies and the availability of the machines
and the inter-machine network.

In the initial population generation step, a prede-

fined number of distinct chromosomes are randomly
created. The solution from a non-evolutionary heuris-
tic 1s also included in the initial population. After
the initial population is determined, the genetic algo-
rithm iterates until a predefined stopping criterion is
met. Each iteration consists of the selection, crossover,
mutation, and evaluation steps.

In the selection step, some members of the popu-
lation are removed and others are duplicated. First,
all of the chromosomes in the population are ordered
(ranked) by their fitness values. Then a rank-based
roulette wheel selection scheme 1s used to implement
proportionate selection. The population size 1s kept

constant and a chromosome representing a better so-
lution has a higher probability of having one or more



copies in the next generation population. This GA ap-
proach also incorporates elitism, i.e., the best solution
found so far is always kept in the population.

The selection step 1s followed by the crossover step,
where some chromosomes are paired and correspond-
ing components of the paired chromosomes are ex-
changed. The crossover operator for the scheduling
strings randomly chooses some pairs of the schedul-
ing strings in the current population. For each pair,
it randomly generates a cutoff point, and divides the
scheduling strings of the pair into top and bottom
parts. Then, the subtasks in each bottom part are re-
ordered using the relative positions of these subtasks
in the other original scheduling string, thus guaran-
teeing that the newly generated scheduling strings are
valid schedules. The crossover operator for the match-
ing strings randomly chooses some pairs of the match-
ing strings in the current population. For each pair, it
randomly generates a cutoff point, and divides both
matching strings of the pair into two parts. Then
the machine assignments of the bottom parts are ex-
changed.

The next step is mutation. The scheduling string
mutation operator randomly chooses some scheduling
strings in the current population. Then for each cho-
sen scheduling string, it randomly selects a victim sub-
task. The valid range of the victim subtask is the set
of the positions in the scheduling string at which this
victim subtask can be placed and still have a valid
topological sort of the DAG. The victim subtask is
moved randomly to another position in the schedul-
ing string within its valid range. The matching string
mutation operator randomly chooses some matching
strings in the current population. For each chosen
matching string, it randomly selects a subtask entry.
Then the machine assignment for the selected entry is
changed randomly to another machine.

The last step of an evolution iteration is the
evaluation step to determine the fitness value of each
chromosome in the current population. A communi-
cation subsystem that is modeled after a HIPPI LAN
with a central crossbar switch was assumed for the
tests that were conducted. As stated earlier, the above
steps of selection, crossover, mutation, and evaluation
are repeated until one of the stopping criteria are met:
(1) the number of iterations reaches some limit (e.g.,
1000), (2) the population converged (all the chromo-
somes had the same fitness value), or (3) the best so-
lution found was not improved after some number of
iterations (e.g., 150).

In the tests of this GA approach in [21], simu-
lated program behaviors were used. Small-scale tests

were conducted with up to ten subtasks, three ma-
chines, and population size 50. For each test, the GA
approach found a solution (mapping) that had the
same expected completion time for the task as that
of the optimal solution found by exhaustive search.
Larger tests with up to 100 subtasks, 20 machines,
and population size 200 were conducted. This GA ap-
proach produced solutions (mappings) that averaged
from 150% to 200% better than those produced by the
non-evolutionary levelized min-time (LMT) heuristic
proposed in [10]. The heuristic in [10] was selected
for comparison because it used a similar model of HC.
The GA approach took much more time to generate
the mappings than did the LMT approach; however,
if the mappings are being created off-line, prior to run
time, for production tasks that will be executed re-
peatedly, the generation time is worthwhile.

4 Dynamic Task Mapping

The static mapping algorithms assume that accu-
rate estimates are available for parameters such as
subtask completion times. However, in general, such
estimates have a degree of uncertainty in them. There-
fore, dynamic mapping algorithms that can handle the
uncertainty may be needed. Researchers have pro-
posed different dynamic algorithms for varying HC
models (e.g., [3, 6, 9, 14]). In dynamic mapping al-
gorithms, machines can come on-line and go off-line
at run time.

As an example of current Purdue research on
dynamic mapping, an algorithm called the hybrid
mapper is discussed in this section. The hybrid map-
per uses some results based on an initial static map-
ping in conjunction with information available only at
execution time. It is based on the list scheduling class
of algorithms [10]. An initial, statically obtained map-
ping is provided as input to the hybrid mapper. If the
initial mapping is not provided, 1t should be obtained
before running the hybrid mapper.

An HC model similar to the one described in Sec-
tion 3 is assumed here. Two indices, ¢ and k are as-
sociated with each subtask s; ;. The index ¢ denotes
that s; 5 is the ¢-th subtask in the set S and k is the
block number assigned to it by the partitioning algo-
rithm described below. The estimated expected com-
putation time of subtask s; ; on machine m; is given
by e; 1 ;. The earliest time at which machine m; is

available is given by A[j].

The hybrid mapper executes in two phases. This
first phase uses the initial static mapping, expected
subtask computation times, and expected data trans-
fer times to preprocess the DAG that represents the

application off line. Initially, the DAG is partitioned



into B blocks, numbered consecutively from 0 to B—1.
The partitioning is done such that the subtasks within
a block are independent, 1.e., there are no data depen-
dencies among the subtasks in a block. Furthermore,
for each block k subtask, s; », there exists at least one
incident edge (data dependency) such that the source
subtask is in block & — 1, i.e.; an incident edge from
some s; x—1. The (B — 1)-th block includes the sub-
tasks without any successors and the 0-th block in-
cludes only those subtasks without any predecessors.
Once the subtasks in the DAG are partitioned, each
subtask 1s assigned a level by examining the subtasks
from block B —1 to block 0. The level of each subtask
in the (B — 1)-th block is set to its expected compu-
tation time on the machine to which it was assigned
by the initial matching. Now consider the k-th block,
0 <k < B-1. Recall ¢; . is the expected compu-
tation time of the subtask s;  on machine m,. Let
¢; ; be the data transfer time for a descendent s; , of

s; 1 to get all the relevant data items from s; ; (where
g > k+1). The value of ¢; ; will be dependent on
the machines assigned to subtasks s; . and s; , by the
initial mapping. Let level(s; ) be the level of the sub-

task s; ;. Let iss(s; x) be the immediate successor set
of subtask s; 5 such that there is an arc from s; to
each member of iss(s; ) in the DAG. With these def-
initions, the level of a subtask s; ; that is initially as-
signed to my is given by:

level(s; 1) = €i ko + max ) (i j+1evel(s; 4)).

s5.q €1s8(s; &

The level of a subtask can be interpreted as the
length of the critical path from the point the given
subtask is located on the DAG to a subtask with no
successors. The hybrid mapper is based on the heuris-
tic idea that by executing the subtasks with higher
levels as quickly as possible, the overall expected com-
pletion time for the application can be minimized.

The second phase of the hybrid mapper involves
the actual execution of the subtasks. The execution
of the subtasks proceeds from block 0 to block B — 1.
A block k is considered to be executing if at least one
subtask from block & is executing. The execution of
several blocks can overlap with each other in time,
1.e., subtasks from different blocks could be executing
at the same time.

The hybrid mapper starts remapping the block &
subtasks when the first block (k — 1) subtask begins
its execution. When block k is being scheduled, it
is highly likely that actual execution time informa-
tion can be used for many subtasks from blocks 0 to
k — 2. There may be some subtasks from blocks 0 to

k — 2 that could still be executing or awaiting execu-
tion when subtasks from block k are being considered
for remapping. For such subtasks, expected execution
times are used.

In a list-scheduling type of algorithm, the subtasks
are first ordered based on some priority. Then, each
subtask is mapped by examining the list of subtasks
from the highest priority subtask to the lowest prior-
ity subtask. The machine to which each subtask is
assigned depends on the matching criterion used by
the particular algorithm. In the hybrid mapper, the
priority of a subtask is equal to the level of that sub-
task that was computed statically in the first phase.
The matching criterion used for subtask s;; is the
minimization of the partial completion time, defined
below.

Let m; be the machine on which s; ;. is being con-
sidered for execution. Then let pct(s; ;, #) denote the
partial completion time of the subtask s; ; on machine
Mg, dr(s; ) be the time at which the last data item re-
quired by s; 1 to begin its execution arrives at m,, and
ips(s; 1) be the immediate predecessor set for subtask
m that there is an arc to s; ; from each member
of ips(s; x) in the DAG. For any subtask s; 5, where
s;.q €1ps(s; ), and s; 4 is currently mapped onto ma-
chine my,

i _ max . .
dr(six) = $jq € ips(si k) (cji +pct(sjq,9)),
pet(si g, ) = eig o+ max(Afz],dr(s; ).

The subtask s;; is remapped onto the machine m,
that gives the minimum pct(s; x, ), and Afz] is up-
dated using pct(s; ). Then the next subtask from the
list 1s considered for mapping.

The simulation results indicate that the perfor-
mance of a statically obtained initial mapping can
be improved by the hybrid mapper. Initial mappings
were generated using the baseline algorithm [21]. The
baseline algorithm partitions the subtasks into blocks
using an algorithm similar to the one described here.
Once the subtasks are partitioned into blocks, they are
ordered such that a subtask in block k comes before a
subtask in block I, where & < [. The subtasks within
a block are arranged such that the subtasks with more
descendents appear before the subtasks with less de-
scendents (ties are broken arbitrarily). The subtasks
are considered for assignment by traversing the list,
beginning with block 0 subtasks. A subtask is mapped
to the machine that gives the shortest partial com-
pletion time for the subtasks that have been mapped
(including this subtask).

From the simulation results obtained, performance



improvement from using the hybrid mapper can be
as much as 15% for some cases. The timings also in-
dicate that the remapping time needed per block of
subtasks 1s in the order hundreds of milliseconds for
up to 50 machines and 500 subtasks. In the worst case
situation, to obtain complete overlap between the ex-
ecution of the subtasks and the operation of the hy-
brid mapper, the computation time for the shortest
running subtask must be greater than the per block
remapping time. Ongoing research will examine ways
to increase the performance gain obtained from the
use of the hybrid remapper.

5 Open Research Problems

There are a great many open problems that need
to be solved before HC can be made available to ap-
plication programmers in a transparent way (summa-
rized here from [12, 17, 18]). Implementation of the
automatic HC programming environment envisioned
in the conceptual model in Section 2 will require a
great deal of research for devising practical and theo-
retically sound methodologies for each component of
every stage. A general question that is particularly
applicable to stages 1 and 2 of the conceptual model
is: “What information should (must) the user provide
and what information should (can) be determined au-
tomatically?”

To program an HC system, it would be best to have
one or more machine-independent programming lan-
guages [22] that allow the user to augment the code
with compiler directives. The language and directives
should be designed to facilitate (a) the compilation of
the program into efficient code for the machines in the
suite, (b) the task decomposition, (c) the determina-
tion of computational requirements of each subtask,
and (d) the use of machine-dependent subroutine li-
braries.

There 1s a need for debugging and performance
tuning tools that can be used across an HC suite of
machines. This involves research in the areas of dis-
tributed programming environments and visualization
techniques.

Ideally, information about the current loading and
status of the machines in the HC suite and the net-
work should be incorporated into the mapping deci-
sions. Methods must be developed for measuring the
current loading, determining the status (e.g., faulty
or not), and estimating the subtask completion times.
Also, the uncertainty present in the estimated param-
eter values such as subtask completion times should be
taken into consideration in determining the machine
assignment and execution schedule.

There is much ongoing research in the area of inter-

machine data transport. This research includes the
hardware support required, the software protocols re-
quired, designing the network topology, computing the
minimum-time path between two machines, and devis-
ing rerouting schemes in case of faults or heavy loads.
Related to this is the data formatting problem, in-
volving issues such as data type storage formats and
sizes, byte ordering within data types, and machines’
network-interface buffer sizes.

Another area of research is dynamic task migration
between different parallel machines at execution time.
Current research in this area involves determining how
to move an executing task between different machines
[1, 2] and how to use dynamic task migration for load
rebalancing or fault tolerance.

Some of the future research outlined here may be
pursued as part of a DARPA/ITO Quorum Program
project called MSHN (Management System for Het-
erogeneous Networks). MSHN is a collaborative re-
search effort among NPS (Naval Postgraduate School),
NRaD (a Naval Laboratory), Purdue, and USC (Uni-
versity of Southern California). It builds on SmartNet,
an operational scheduling framework and system for
managing resources 1n a heterogeneous environment
developed at NRaD [7]. The technical objective of the
MSHN project is to design, prototype, and refine a dis-
tributed resource management system that leverages
the heterogeneity of resources and tasks to deliver the
requested qualities of service.

In summary, while the use of existing HC systems
demonstrates their significant benefits, the amount of
effort currently required to implement an application
on an HC system can be substantial. Future research
on the above open problems will improve this situation
and allow HC to realize its inherent potential.
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